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* Weather affects our mood and behavior, and through * Australia-wide dataset of 10M catch-up TV viewing
them many aspects of our lives events from February to September 2012

e Morethan 0.6M users all over Australia

e Morethan 11K unique programs
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* We present the first causal analysis of how weather Weather attribute Treated
. Category | Frequency || Category | Frequency Temperature High
affECtS TV content Consump tion patte rns Drama 19.51% || Pre-school 19.31% Feels-like temperature High
Children 17.01% || Comedy 11.37% Wind speed High
. . Docs 10.61% || Lifestyle 8.06% Cloud cover High
Ap p I |Cat|0 N Panel 5.95% || News 4.10% Pressure Low
Arts 2.69% || Education 0.58% Humidity Low
Kids 0.50% || Sport 0.24% Visibility Low
Indigenous 0.05% || Shop 0.02% Precipitation High

* Causal analysis results can be used for better adaptive

personalized recommendations of TV and video Empirical Results
C It Example: When pressure and precipitationis low (rain), the frequency of
dausall y watching Dramasdrops significantly. Possible explanation:

children cannot play outside and watch TV at home
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* Goal: Estimate average treatment effect on treated (ATT) effects
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* Key challenge: Balance the distributions of treated and Feols ke tomn EH;
control events Wind speed (H)
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* Solution: Nearest neighbor matching on the covariates
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Matched control event to treated event 1 (c) Anindividual user

Our causal findings confirms that there are causal relations between
weather and users’ TV watching patterns

 Covariate is the profile of the user and the time at 1




